Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Elife ; 122023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134226

RESUMO

As the deepest vertebrate in the ocean, the hadal snailfish (Pseudoliparis swirei), which lives at a depth of 6,000-8,000 m, is a representative case for studying adaptation to extreme environments. Despite some preliminary studies on this species in recent years, including their loss of pigmentation, visual and skeletal calcification genes, and the role of trimethylamine N-oxide in adaptation to high-hydrostatic pressure, it is still unknown how they evolved and why they are among the few vertebrate species that have successfully adapted to the deep-sea environment. Using genomic data from different trenches, we found that the hadal snailfish may have entered and fully adapted to such extreme environments only in the last few million years. Meanwhile, phylogenetic relationships show that they spread into different trenches in the Pacific Ocean within a million years. Comparative genomic analysis has also revealed that the genes associated with perception, circadian rhythms, and metabolism have been extensively modified in the hadal snailfish to adapt to its unique environment. More importantly, the tandem duplication of a gene encoding ferritin significantly increased their tolerance to reactive oxygen species, which may be one of the important factors in their adaptation to high-hydrostatic pressure.


Assuntos
Ecossistema , Vertebrados , Animais , Filogenia , Vertebrados/genética , Cromossomos
2.
Front Microbiol ; 14: 1179935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455748

RESUMO

The genus Rimicaris is the dominant organism living in hydrothermal vents. However, little research has been done on the functions of their intestinal flora. Here, we investigated the potential functions of Deferribacterota, which is dominant in the intestine of Rimicaris kairei from the Central Indian Ridge. In total, six metagenome-assembled genomes (MAGs) of Deferribacterota were obtained using the metagenomic approach. The six Deferribacterota MAGs (Def-MAGs) were clustered into a new branch in the phylogenetic tree. The six Def-MAGs were further classified into three species, including one new order and two new genera, based on the results of phylogenetic analysis, relative evolutionary divergence (RED), average nucleotide identity (ANI), average amino acid identity (AAI) and DNA-DNA hybridization (DDH) values. The results of the energy metabolism study showed that these bacteria can use a variety of carbon sources, such as glycogen, sucrose, salicin, arbutin, glucose, cellobiose, and maltose. These bacteria have a type II secretion system and effector proteins that can transport some intracellular toxins to the extracellular compartment and a type V CRISPR-Cas system that can defend against various invasions. In addition, cofactors such as biotin, riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) synthesized by R. kairei gut Deferribacterota may also assist their host in surviving under extreme conditions. Taken together, the potential function of Deferribacterota in the hydrothermal R. kairei gut suggests its long-term coevolution with the host.

3.
Front Microbiol ; 14: 1078171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846759

RESUMO

Sponges are widely distributed in the global ocean and harbor diverse symbiotic microbes with mutualistic relationships. However, sponge symbionts in the deep sea remain poorly studied at the genome level. Here, we report a new glass sponge species of the genus Bathydorus and provide a genome-centric view of its microbiome. We obtained 14 high-quality prokaryotic metagenome-assembled genomes (MAGs) affiliated with the phyla Nitrososphaerota, Pseudomonadota, Nitrospirota, Bdellovibrionota, SAR324, Bacteroidota, and Patescibacteria. In total, 13 of these MAGs probably represent new species, suggesting the high novelty of the deep-sea glass sponge microbiome. An ammonia-oxidizing Nitrososphaerota MAG B01, which accounted for up to 70% of the metagenome reads, dominated the sponge microbiomes. The B01 genome had a highly complex CRISPR array, which likely represents an advantageous evolution toward a symbiotic lifestyle and forceful ability to defend against phages. A sulfur-oxidizing Gammaproteobacteria species was the second most dominant symbiont, and a nitrite-oxidizing Nitrospirota species could also be detected, but with lower relative abundance. Bdellovibrio species represented by two MAGs, B11 and B12, were first reported as potential predatory symbionts in deep-sea glass sponges and have undergone dramatic genome reduction. Comprehensive functional analysis indicated that most of the sponge symbionts encoded CRISPR-Cas systems and eukaryotic-like proteins for symbiotic interactions with the host. Metabolic reconstruction further illustrated their essential roles in carbon, nitrogen, and sulfur cycles. In addition, diverse putative phages were identified from the sponge metagenomes. Our study expands the knowledge of microbial diversity, evolutionary adaption, and metabolic complementarity in deep-sea glass sponges.

4.
Front Genet ; 13: 854009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754826

RESUMO

The hadal zone, which represents the deepest marine habitat on Earth (6,000-11,000 m), is a harsh environment mainly characterized by extremely high hydrostatic pressure, and this habitat is believed to have a high degree of endemism. The deep-sea anemone family Galatheanthemidae comprises two valid species exclusively from the hadal; however, no other information about this family is currently available. In the present study, a sea anemone was collected from a depth of 9,462 m at the Mariana Trench and was defined as Galatheanthemum sp. MT-2020 (Actiniaria Galatheanthemidae). The mitochondrial genome of Galatheanthemum sp. MT-2020 was circular, was 16,633 bp in length, and contained two ribosomal RNA genes, 13 protein-coding genes and two transfer RNA genes. The order of the genes of Galatheanthemum sp. MT-2020 was identical to that of the majority of the species of the order Actiniaria. The value of the AT-skew was the lowest in the whole mitochondrial genome, with a positive GC skew value for the atp8 gene, while other species, except Antholoba achates, had the negative values of the GC skew. Galatheanthemum sp. MT-2020 was clustered with another abyssal species, Paraphelliactis xishaensis, in the phylogenetic tree, and these species diverged in the early Jurassic approximately 200 Mya from the shallow-sea species. The usage ratio of valine, which is one of the five amino acids with the strongest barophilic properties, in the mitochondrial genomes of the two abyssal species was significantly higher than that in other species with habitats above the depth of 3,000 m. The ω (dN/dS) ratio of the genomes was 2.45-fold higher than that of the shallow-sea species, indicating a slower evolutionary rate. Overall, the present study is the first to provide a complete mitogenome of sea anemones from the hadal and reveal some characteristics that may be associated with adaptation to an extreme environment.

5.
Mar Drugs ; 19(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34822471

RESUMO

Crustins are widely distributed among different crustacean groups. They are characterized by a whey acidic protein (WAP) domain, and most examined Crustins show activity against Gram-positive bacteria. This study reports two Crustins, Al-crus 3 and Al-crus 7, from hydrothermal vent shrimp, Alvinocaris longirostris. Al-crus 3 and Al-crus 7 belong to Crustin Type IIa, with a similarity of about 51% at amino acid level. Antibacterial assays showed that Al-crus 3 mainly displayed activity against Gram-positive bacteria with MIC50 values of 10-25 µM. However, Al-crus 7 not only displayed activity against Gram-positive bacteria but also against Gram-negative bacteria Imipenem-resistant Acinetobacter baumannii, in a sensitive manner. Notably, in the effective antibacterial spectrum, Methicillin-sensitive Staphylococcus aureus, Escherichia coli (ESBLs) and Imipenem-resistant A. baumannii were drug-resistant pathogens. Narrowing down the sequence to the WAP domain, Al-crusWAP 3 and Al-crusWAP 7 demonstrated antibacterial activities but were weak. Additionally, the effects on bacteria did not significantly change after they were maintained at room temperature for 48 h. This indicated that Al-crus 3 and Al-crus 7 were relatively stable and convenient for transportation. Altogether, this study reported two new Crustins with specific characteristics. In particular, Al-crus 7 inhibited Gram-negative imipenem-resistant A. baumannii.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Penaeidae , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Organismos Aquáticos , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Fontes Hidrotermais , Testes de Sensibilidade Microbiana
6.
Front Surg ; 8: 786351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35223968

RESUMO

OBJECTIVE: The present study aims to increase the concentration of genetically modified bone marrow mesenchymal stem cells (BMSCs) in the distraction osteogenesis (DO) interstitial space and induce the conversion of BMSCs to osteoblasts to improve the osteogenic efficiency in DO and shorten the treatment period. METHODS: Bone morphogenetic protein 1 (BMP-1) and green fluorescent protein (GFP) gene-modified cell sheets of BMSCs were constructed by tissue engineering. Thirty-six New Zealand white rabbits were randomly divided into three groups: group A (the blank control group), group B (the GFP group) with the injection of GFP gene-modified BMSC sheets into the DO gap, and group C (the BMP-1 group) with the injection of BMP-1 gene-modified BMSC sheets into the DO gap. Rabbits in all three groups were distracted for 5 days at a distraction rate of 2.0 mm/d, once/day. After distraction, the above-mentioned cell sheet suspension was injected into the distraction gap to observe osteogenesis, which was observed by gross specimen observation, micro-computed tomography (Micro-CT) scanning, and histomorphology. RESULTS: The gross specimen observation showed that all animals had smooth and continuous bone cortex in the distraction region with relatively high hardness. The osteogenesis quality or hardness was ranked from the highest to the lowest, as Group C > Group B > Group A. Micro-CT and histomorphological observation revealed that group C had better maturation and bone volume of the new bone in the DO region at weeks 3 and 6 than groups B and A. CONCLUSION: BMP-1 gene-modified BMSC sheets could effectively promote the formation of new bone during rapid DO in the mandible, compensating for the poor osteogenesis caused by rapid distraction and providing a new approach to shorten the DO treatment period in clinical practice.

7.
Front Microbiol ; 12: 802888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35242112

RESUMO

Despite extreme physical and chemical characteristics, deep-sea hydrothermal vents provide a place for fauna survival and reproduction. The symbiotic relationship of chemotrophic microorganisms has been investigated in the gill of Rimicaris exoculata, which are endemic to the hydrothermal vents of the Mid-Atlantic Ridge. However, only a few studies have examined intestinal symbiosis. Here, we studied the intestinal fauna in juvenile and adult Rimicaris kairei, another species in the Rimicaris genus that was originally discovered at the Kairei and Edmond hydrothermal vent fields in the Central Indian Ridge. The results showed that there were significant differences between juvenile and adult gut microbiota in terms of species richness, diversity, and evenness. The values of Chao1, observed species, and ASV rarefaction curves indicated almost four times the number of species in adults compared to juveniles. In juveniles, the most abundant phylum was Deferribacterota, at 80%, while in adults, Campilobacterota was the most abundant, at 49%. Beta diversity showed that the intestinal communities of juveniles and adults were clearly classified into two clusters based on the evaluations of Bray-Curtis and weighted UniFrac distance matrices. Deferribacteraceae and Sulfurovum were the main featured bacteria contributing to the difference. Moreover, functional prediction for all of the intestinal microbiota showed that the pathways related to ansamycin synthesis, branched-chain amino acid biosynthesis, lipid metabolism, and cell motility appeared highly abundant in juveniles. However, for adults, the most abundant pathways were those of sulfur transfer, carbohydrate, and biotin metabolism. Taken together, these results indicated large differences in intestinal microbial composition and potential functions between juvenile and adult vent shrimp (R. kairei), which may be related to their physiological needs at different stages of development.

8.
Mitochondrial DNA B Resour ; 5(1): 619-620, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33366673

RESUMO

In this study, the complete mitochondrial DNA sequence of a hagfish Eptatretus sp. Nan-Hai from a depth of 1000 m is presented. The complete sequence was determined using next-generation sequencing and long PCRs. The mitochondrial genome of Eptatretus sp. Nan-Hai is 17,538 bps in size and composed of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and one control region (D-loop). The base composition of mitochondrial genome is biased toward A + T content, at 67.21%, with GC skew of -0.35 and AT skew of -0.03. A phylogenetic tree revealed that within the genus Eptatretus, Eptatretus sp. Nan-Hai is closely related to Eptatretus atami.

9.
Microorganisms ; 8(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260795

RESUMO

Intestinal bacterial communities are highly relevant to the digestion, nutrition, growth, reproduction, and immunity of animals, but little is known about the composition and function of intestinal microbiota in deep-sea invertebrates. In this study, the intestinal microbiota of six holothurian Molpadia musculus were investigated, showing that their midguts were predominantly occupied by Izemoplasmatales bacteria. Using metagenomic sequencing, a draft genome of 1,822,181 bp was successfully recovered. After comparison with phylogenetically related bacteria, genes involved in saccharide usage and de novo nucleotide biosynthesis were reduced. However, a set of genes responsible for extracellular nucleoside utilization and 14 of 20 amino acid synthesis pathways were completely retained. Under oligotrophic condition, the gut-associated bacterium may make use of extracellular DNA for carbon and energy supplement, and may provide essential amino acids to the host. The clustered regularly interspaced short palindromic repeat (CRISPR) and restriction-modification (RM) systems presented in the genome may provide protection against invading viruses. A linear azol(in)e-containing peptide gene cluster for bacteriocin synthesize was also identified, which may inhibit the colonization and growth of harmful bacteria. Known virulence factors were not found by database searching. On the basis of its phylogenetic position and metabolic characteristics, we proposed that the bacterium represented a novel genus and a novel family within the Izemoplasmatales order and suggested it be named "Candidatus Bathyoplasma sp. NZ". This was the first time describing host-associated Izemoplasmatales.

10.
BMC Genomics ; 21(1): 408, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552739

RESUMO

BACKGROUND: The metabolic capacity, stress response and evolution of uncultured environmental Tenericutes have remained elusive, since previous studies have been largely focused on pathogenic species. In this study, we expanded analyses on Tenericutes lineages that inhabit various environments using a collection of 840 genomes. RESULTS: Several environmental lineages were discovered inhabiting the human gut, ground water, bioreactors and hypersaline lake and spanning the Haloplasmatales and Mycoplasmatales orders. A phylogenomics analysis of Bacilli and Tenericutes genomes revealed that some uncultured Tenericutes are affiliated with novel clades in Bacilli, such as RF39, RFN20 and ML615. Erysipelotrichales and two major gut lineages, RF39 and RFN20, were found to be neighboring clades of Mycoplasmatales. We detected habitat-specific functional patterns between the pathogenic, gut and the environmental Tenericutes, where genes involved in carbohydrate storage, carbon fixation, mutation repair, environmental response and amino acid cleavage are overrepresented in the genomes of environmental lineages, perhaps as a result of environmental adaptation. We hypothesize that the two major gut lineages, namely RF39 and RFN20, are probably acetate and hydrogen producers. Furthermore, deteriorating capacity of bactoprenol synthesis for cell wall peptidoglycan precursors secretion is a potential adaptive strategy employed by these lineages in response to the gut environment. CONCLUSIONS: This study uncovers the characteristic functions of environmental Tenericutes and their relationships with Bacilli, which sheds new light onto the pathogenicity and evolutionary processes of Mycoplasmatales.


Assuntos
Bacillus/classificação , Tenericutes/classificação , Tenericutes/patogenicidade , Acetatos/metabolismo , Adaptação Fisiológica , Bacillus/genética , Bacillus/metabolismo , Reatores Biológicos/microbiologia , DNA Bacteriano/genética , Microbioma Gastrointestinal , Água Subterrânea/microbiologia , Humanos , Hidrogênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Tenericutes/genética , Tenericutes/metabolismo
11.
PLoS One ; 15(1): e0227587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923275

RESUMO

Diffusing fluid at a deep-sea hydrothermal vent creates rapid, acute physico-chemical gradients that correlate strongly with the distribution of the vent fauna. Two alvinocaridid shrimps, Alvinocaris longirostris and Shinkaicaris leurokolos occupy distinct microhabitats around these vents and exhibit different thermal preferences. S. leurokolos inhabits the central area closer to the active chimney, while A. longirostris inhabits the peripheral area. In this study, we screened candidate genes that might be involved in niche separation and microhabitat adaptation through comparative transcriptomics. The results showed that among the top 20% of overexpressed genes, gene families related to protein synthesis and structural components were much more abundant in S. leurokolos compared to A. longirostris. Moreover, 15 out of 25 genes involved in cellular carbohydrate metabolism were related to trehalose biosynthesis, versus 1 out of 5 in A. longirostris. Trehalose, a non-reducing disaccharide, is a multifunctional molecule and has been proven to act as a protectant responsible for thermotolerance in Saccharomyces cerevisiae. Putative positively selected genes involved in chitin metabolism and the immune system (lectin, serine protease and antimicrobial peptide) were enriched in S. leurokolos. In particular, one collagen and two serine proteases were found to have experienced strong positive selection. In addition, sulfotransferase-related genes were both overexpressed and positively selected in S. leurokolos. Finally, genes related to structural proteins, immune proteins and protectants were overexpressed or positively selected. These characteristics could represent adaptations of S. leurokolos to its microhabitat, which need to be confirmed by more evidence, such as data from large samples and different development stages of these alvinocaridid shrimps.


Assuntos
Aclimatação/genética , Adaptação Fisiológica/genética , Decápodes/genética , Animais , Crustáceos/genética , Ecossistema , Perfilação da Expressão Gênica/métodos , Fontes Hidrotermais , Filogenia , Transcriptoma/genética
12.
Int J Biol Macromol ; 141: 570-577, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505211

RESUMO

Alicella gigantea (Alicelloidae) is a scavenger with the largest body size among amphipods. It is a participant in the foodweb of deepsea ecosystem and distributed with vast bathymetric and geographic ranges. In this study, the mitochondrial genome of A. gigantea was completely assembled and characterized. The complete sequence has a total length of 16,851 bp, comprising the usual eukaryotic components, with 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and 2 noncoding control regions (CRs). The gene rearrangement and reverse nucleotide strand bias of its mitochondrial genome are similar to those observed in the deepsea amphipod Eurythenes maldoror (Eurytheneidae), but different from the characters of Halice sp. MT-2017 (Dexaminoidea), an inhabitant of a deeper environment. Phylogenetic analysis indicates that A. gigantea occupies the basal branch of deepsea species-E. maldoror and Hirondellea gigas. This phylogeny supports the hypothesis that the evolution of hadal amphipods has undergone a transition from the abyssal depth. Compared to 41 available shallow water equivalents, the four accessible mitochondrial genomes from the deep sea, including the one produced in this study, show significantly fewer charged amino acids in the 13 PCGs, which suggests an adaption to the deepsea environment.


Assuntos
Adaptação Fisiológica/genética , Anfípodes/genética , Organismos Aquáticos/genética , Genoma Mitocondrial , Filogenia , Animais , Proteínas de Artrópodes/genética , Proteínas Mitocondriais/genética , RNA Mitocondrial/genética
13.
Sci Rep ; 9(1): 2610, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796230

RESUMO

Small amphipods (Halice sp. MT-2017) with body length <1 cm were collected from the Challenger Deep (~10,920 m below sea level). The divergence time of their lineage was approximately 109 Mya, making this group ancient compared to others under study. The mitochondrial genome of Halice sp. shared the usual gene components of metazoans, comprising 13 protein coding genes (PCGs), 22 transfer RNAs (tRNAs), and 2 ribosomal RNAs (rRNAs). The arrangement of these genes, however, differed greatly from that of other amphipods. Of the 15 genes that were rearranged with respect to the pancrustacean gene pattern, 12 genes (2 PCGs, 2 rRNAs, and 8 tRNAs) were both translocated and strand-reversed. In contrast, the mitochondrial genomes in other amphipods never show so many reordered genes, and in most instances, only tRNAs were involved in strand-reversion-coupled translocation. Other characteristics, including reversed strand nucleotide composition bias, relatively higher composition of non-polar amino acids, and lower evolutionary rate, were also identified. Interestingly, the latter two features were shared with another hadal amphipod, Hirondellea gigas, suggesting their possible associations with the adaptation to deep-sea extreme habitats. Overall, our data provided a useful resource for future studies on the evolutionary and adaptive mechanisms of hadal faunas.


Assuntos
Anfípodes/genética , Ecossistema , Genoma Mitocondrial , Aminoácidos/genética , Animais , Composição de Bases/genética , Teorema de Bayes , Códon/genética , Evolução Molecular , Rearranjo Gênico , Genes Mitocondriais , Variação Genética , Mutação/genética , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética , Fatores de Tempo
14.
Mitochondrial DNA B Resour ; 5(1): 337-339, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33366546

RESUMO

The complete mitochondrial genome of the deep sea amphipod Eurythenes magellanicus was determined in this paper. This molecular was 14,988 bp in length, and contained the typical 13 protein coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs) and one control region (CR). The gene order of E. magellanicus was identical to that from E. maldoror, a deep sea amphipod inhabiting in a deeper habitat than E. magellanicus. A maximum-likelihood tree based on the 13 PCGs from 25 amphipods indicated that E. magellanicus and E. maldoror were closely related and the origin of deep sea amphipods was not monophyletic.

15.
Front Microbiol ; 10: 2978, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998265

RESUMO

Hadal trenches are characterized by not only high hydrostatic pressure but also scarcity of nutrients and high diversity of viruses. Snailfishes, as the dominant vertebrates, play an important role in hadal ecology. Although studies have suggested possible reasons for the tolerance of hadal snailfish to high hydrostatic pressure, little is known about the strategies employed by hadal snailfish to cope with low-nutrient and virus-rich conditions. In this study, the gut microbiota of hadal snailfish was investigated. A novel bacterium named "Candidatus Mycoplasma liparidae" was dominant in the guts of three snailfish individuals from both the Mariana and Yap trenches. A draft genome of "Ca. Mycoplasma liparidae" was successfully assembled with 97.8% completeness by hybrid sequencing. A set of genes encoding riboflavin biosynthesis proteins and a clustered regularly interspaced short palindromic repeats (CRISPR) system was present in the genome of "Ca. Mycoplasma liparidae," which was unusual for Mycoplasma. The functional repertoire of the "Ca. Mycoplasma liparidae" genome is likely set to help the host in riboflavin supplementation and to provide protection against viruses via a super CRISPR system. Remarkably, genes encoding common virulence factors usually exist in Tenericutes pathogens but were lacking in the genome of "Ca. Mycoplasma liparidae." All of these characteristics supported an essential role of "Ca. Mycoplasma liparidae" in snailfish living in the hadal zone. Our findings provide further insights into symbiotic associations in the hadal biosphere.

16.
J Oral Maxillofac Surg ; 76(10): 2192-2201, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29684310

RESUMO

PURPOSE: This study aimed to assess the effect of health-related quality of life (QoL) among patients with dentofacial deformities who underwent orthognathic surgery compared with a control group without dentofacial deformities by use of generic oral health and condition-specific approaches. PATIENTS AND METHODS: In this prospective study, 2 questionnaires were administered to 85 patients (31 male and 54 female patients) who were evaluated before undergoing orthognathic surgery. The Short Form Oral Health Impact Profile Questionnaire (OHIP-14) and the Orthognathic Quality of Life Questionnaire (OQLQ) were administered before and 5 to 7 months after orthognathic surgery. The control group comprised 96 young university student volunteers without dentofacial deformities. RESULTS: The questionnaires were collected 5 to 7 months after surgery. The preoperative scores of the patients and the control group were contrasted separately. The respondents' postoperative OHIP-14 and OQLQ scores were significantly lower (P < .001 for total scores). The preoperative OQLQ scores for all domains were significantly higher among the patients than among the controls (P < .001 for total scores), whereas the total scores and 3 subscale scores of the OHIP-14 in the functional and psychological domains were significantly higher among the patients than among the controls (P < .05 for total scores). The preoperative and postoperative OQLQ total scores were remarkably different between male and female patients (P < .05). The postoperative OQLQ total scores were considerably higher in older patients than in younger patients (P < .05). All patients in the Class III group who underwent double-jaw surgery showed remarkable changes after surgery (P < .001 for total scores). CONCLUSIONS: Patients with dentofacial deformities had a poorer QoL compared with the healthy population, especially in functional and psychological aspects. Orthognathic surgery had a significant positive impact on QoL. Patients with Class III malocclusion who underwent double-jaw surgery seemingly benefitted the most after surgery.


Assuntos
Deformidades Dentofaciais/psicologia , Deformidades Dentofaciais/cirurgia , Estética Dentária/psicologia , Inquéritos Epidemiológicos , Cirurgia Ortognática/métodos , Qualidade de Vida/psicologia , Adolescente , Adulto , China , Feminino , Nível de Saúde , Inquéritos Epidemiológicos/métodos , Humanos , Masculino , Estudos Prospectivos
17.
Mar Drugs ; 16(3)2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510563

RESUMO

N-acetylneuraminic acid (Neu5Ac) based novel pharmaceutical agents and diagnostic reagents are highly required in medical fields. However, N-acetylneuraminate lyase(NAL)for Neu5Ac synthesis is not applicable for industry due to its low catalytic efficiency. In this study, we biochemically characterized a deep-sea NAL enzyme (abbreviated form: MyNal) from a symbiotic Mycoplasma inhabiting the stomach of a deep-sea isopod, Bathynomus jamesi. Enzyme kinetic studies of MyNal showed that it exhibited a very low Km for both cleavage and synthesis activities compared to previously described NALs. Though it favors the cleavage process, MyNal out-competes the known NALs with respect to the efficiency of Neu5Ac synthesis and exhibits the highest kcat/Km values. High expression levels of recombinant MyNal could be achieved (9.56 mol L-1 culture) with a stable activity in a wide pH (5.0-9.0) and temperature (40-60 °C) range. All these features indicated that the deep-sea NAL has potential in the industrial production of Neu5Ac. Furthermore, we found that the amino acid 189 of MyNal (equivalent to Phe190 in Escherichia coli NAL), located in the sugar-binding domain, GX189DE, was also involved in conferring its enzymatic features. Therefore, the results of this study improved our understanding of the NALs from different environments and provided a model for protein engineering of NAL for biosynthesis of Neu5Ac.


Assuntos
Proteínas de Bactérias/química , Isópodes/microbiologia , Mycoplasma/química , Ácido N-Acetilneuramínico/biossíntese , Oxo-Ácido-Liases/química , Sequência de Aminoácidos , Animais , Organismos Aquáticos/química , Organismos Aquáticos/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biotecnologia/métodos , Clonagem Molecular , Ensaios Enzimáticos , Mutagênese , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/isolamento & purificação , Oxo-Ácido-Liases/metabolismo , Domínios Proteicos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Simbiose
18.
Nucleic Acids Res ; 46(5): 2197-2203, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29390076

RESUMO

The position 34 of a tRNA is always modified for efficient recognition of codons and accurate integration of amino acids by the translation machinery. Here, we report genomics features of a deep-sea gut symbiotic Spiroplasma, which suggests that the organism does not require tRNA(34) anticodon modifications. In the genome, there is a novel set of tRNA genes composed of 32 species for recognition of the 20 amino acids. Among the anticodons of the tRNAs, we witnessed the presence of both U34- and C34-containing tRNAs required to decode NNR (A/G) 2:2 codons as countermeasure of probable loss of anticodon modification genes. In the tRNA fragments detected in the gut transcriptome, mismatches expected to be caused by some tRNA modifications were not shown in their alignments with the corresponding genes. However, the probable paucity of modified anticodons did not fundamentally change the codon usage pattern of the Spiroplasma. The tRNA gene profile that probably resulted from the paucity of tRNA(34) modifications was not observed in other symbionts and deep-sea bacteria, indicating that this phenomenon was an evolutionary dead-end. This study provides insights on co-evolution of translation machine and tRNA genes and steric constraints of codon-anticodon interactions in deep-sea extreme environment.


Assuntos
Anticódon/genética , Perfilação da Expressão Gênica , Nucleotídeos/genética , Biossíntese de Proteínas , RNA de Transferência/genética , Spiroplasma/genética , Aminoácidos/genética , Sequência de Bases , Códon/genética , RNA de Transferência/metabolismo , Homologia de Sequência do Ácido Nucleico , Simbiose/genética
19.
PeerJ ; 6: e4225, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29333345

RESUMO

Ontogeny reversal, as seen in some cnidarians, is an unprecedented phenomenon in the animal kingdom involving reversal of the ordinary life cycle. Three species of Turritopsis have been shown to be capable of inverted metamorphosis, a process in which the pelagic medusa transforms back into a juvenile benthic polyp stage when faced with adverse conditions. Turritopsis sp.5 is a species of Turritopsis collected from Xiamen, China which presents a similar ability, being able to reverse its life cycle if injured by mechanical stress. Phylogenetic analysis based on both 16S rDNA and cytochrome c oxidase subunit I (COI) genetic barcodes shows that Turritopsis sp.5 is phylogenetically clustered in a clade separate from other species of Turritopsis. The genetic distance between T. sp.5 and the Japanese species T. sp.2 is the shortest, when measured by the Kimura 2-Parameter metric, and the distance to the New Zealand species T. rubra is the largest. An experimental assay on the induction of reverse development in this species was initiated by cutting medusae into upper and lower parts. We show, for the first time, that the two dissected parts have significantly different potentials to transform into polyps. Also, a series of morphological changes of the reversed life cycle can be recognised, including medusa stage, contraction stage I, contraction stage II, cyst, cyst with stolons, and polyp. The discovery of species capable of reverse ontogeny caused by unfavorable conditions adds to the available systems with which to study the cell types that contribute to the developmental reversal and the molecular mechanisms of the directional determination of ontogeny.

20.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054873

RESUMO

Protective symbiosis has been reported in many organisms, but the molecular mechanisms of the mutualistic interactions between the symbionts and their hosts are unclear. Here, we sequenced the 424-kbp genome of "Candidatus Spiroplasma holothuricola," which dominated the hindgut microbiome of a sea cucumber, a major scavenger captured in the Mariana Trench (6,140 m depth). Phylogenetic relationships indicated that the dominant bacterium in the hindgut was derived from a basal group of Spiroplasma species. In this organism, the genes responsible for the biosynthesis of amino acids, glycolysis, and sugar transporters were lost, strongly suggesting endosymbiosis. The highly decayed genome consists of two chromosomes and harbors genes coding for proteolysis, microbial toxin, restriction-methylation systems, and clustered regularly interspaced short palindromic repeats (CRISPRs), composed of three cas genes and 76 CRISPR spacers. The holothurian host is probably protected against invading viruses from sediments by the CRISPRs/Cas and restriction systems of the endosymbiotic spiroplasma. The protective endosymbiosis indicates the important ecological role of the ancient Spiroplasma symbiont in the maintenance of hadal ecosystems.IMPORTANCE Sea cucumbers are major inhabitants in hadal trenches. They collect microbes in surface sediment and remain tolerant against potential pathogenic bacteria and viruses. This study presents the genome of endosymbiotic spiroplasmas in the gut of a sea cucumber captured in the Mariana Trench. The extreme reduction of the genome and loss of essential metabolic pathways strongly support its endosymbiotic lifestyle. Moreover, a considerable part of the genome was occupied by a CRISPR/Cas system to provide immunity against viruses and antimicrobial toxin-encoding genes for the degradation of microbes. This novel species of Spiroplasma is probably an important protective symbiont for the sea cucumbers in the hadal zone.


Assuntos
Genoma Bacteriano , Pepinos-do-Mar/microbiologia , Spiroplasma/genética , Simbiose , Animais , Oceano Pacífico , Filogenia , Análise de Sequência de DNA , Spiroplasma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...